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Abstract. Generalisations of Wigner’s formulae relating to the counting problem when one 
considers the restriction of the irreducible representations of a group to its subgroups are 
obtained in the context of the symmetric group. The usefulness of these in the enumeration 
problem of many-body diagrams is described. 

1. Introduction 

‘The concept of a subclass of a given group was first introduced by Wigner (1971) to 
study the problem of the restriction of an irreduclble representation of a group to a 
‘subgroup’. Recently Rosensteel et a1 (1975), Ihrig et a1 (1976) and Wise and Trainor 
(1978) have classified the k-particle Green functions of many-body perturbation theory 
with the help of an equivalence relation defined over the elements of the symmetric 
group S Z n + k .  This equivalence relation can be identified with the subclass equivalence 
relation of Wigner in the case of single-particle Green functions and with the double- 
class equivalence relation in the case of k-particle Green functions, k 2 1 (Hasselbarth 
et a1 1976). Rosensteel et a1 solved the enumeration problem of the k-particle 
many-body diagrams using essentially the combinatorial properties of the symmetric 
group. In this paper we intend to show that one can use the results on group 
representation obtained by Wigner (1971) to solve the same enumeration problem. For 
this purpose we first extend Wigner’s result using double classes which are a generalisa- 
tion of subclasses. Finally, starting from the formula for the number of subclasses as 
given by Wigner, we derive the formula of Rosensteel et a1 (1975) dealing with the 
enumeration of k-particle many-body diagrams. 

The plan of the paper is as follows. In § 2 we generalise the result I1 of Wigner 
(1971). In the same section we introduce the many-body enumeration problem and 
write the formula of Rosensteel et af (1975) in representation theoretic language. 
Using this we derive the combinatorial formula of Rosensteel et a1 (1975). In 8 3 we 
generalise Wigner’s formula 111. 

2. Green diagrams and S z n + k  

In order to understand the choice of certain equivalence classes mentioned below we 
describe briefly the formulation of k-particle Green diagrams by Wise and Trainor 
(1978). According to them, every nth-order diagram in many-body perturbation 
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theory can be described by an ordered triple (V, p ,  T ) ,  etc, where V represents the set of 
2n + k vertices, V = {1 ,2 ,  , . . ,2n ,  2n + 1, .  . . , 2 n  + k}, 1,2 ,  . . . , 2 n  are the internal 
vertices of the diagram and 2n + 1,  , . , , 2 n  -t k refer to the external vertices. Further, 
p E SZn+k  is any permutation of these vertices ( p  : V + V) and T is a product of n disjoint 
transpositions (7 :  V -* V) which interchanges distinct pairs of internal vertices but 
leaves external vertices unaltered. 

Given an ordered triple (V, p ,  T )  one can associate with it a unique nth-order 
k-particle Green diagram as follows. If p maps an internal vertex i into an internal 
vertexj = p ( i )  then a directed line is drawn from i to j. If p also maps the internal vertex 
1 into the external vertex 2n + p, p E {1 ,2 ,  . . . , k } ,  and external vertex 2n + v with 
v E { 1 , 2 , .  . . , k }  into the internal vertex h, then external Green lines are drawn from 1 
and inwards to h respectively. Finally, if p maps one external vertex into another 
external vertex, a free directed Green line is drawn between them. The transpositions 
composing T are represented by interaction lines joining the n pairs of internal wtices. 
Thus the equivalence classes of permutations p E SZn+k can be linked to the equivalence 
classes of the corresponding diagrams themselves. 

2.1. Restriction of irreducible representations of a group to its subgroup-a generalisation 

In order to deal with the irreducible representations of ~ 2 ~ . +  k we adopt the notation cf 
Wigner (1971). Thus, we shall denote the elements of the full group SZ,,+k by capital 
letters P, Q, R, S, . . . and those of the subgroups by the Greek letters U, p, . . . . The 
irreducible representations of the full group S2n+k  will be denoted by D with suitable 
indices and those of the subgroup by d. The indices J, K, . . . will serve to label the 
different irreducible representations of the full group while j ,  k, . . . will refer to those of 
the subgroup. Finally, the symbol (J, j )  denotes the number of times the irreducible 
representation DJ of the full group contains the irreducible representation d' of the 
subgroup, if the former is restricted to the subgroup. Throughout this paper we are 
interested in the subgroup c ( T ~ )  A s Y t  of S Z n + k  (Wise and Trainor 1978) where ~ ( 7 ~ )  is 
the centraliser of the element T~ E S Z n t k .  T~ is given by 

T O  = (12)(34)  . . . (2n  - 12n)(2n + 1) . . (2n + k )  E SZn+k. 

The symbols contained in the two-cycles label the internal vertices of the Green 
functions and those contained in the one-cycles stand for the external particles. sTt i s  
the symmetric group of degree k on the k external symbols. The wedge A stands for the 
semidirect product (Altman 1977). 

Consider the direct product group SZn+k  x s Z n + k ( ( c ( T O )  A ST') x ~ ( 7 ~ ) )  is a subgroup 
of it. The elements of c ( T ~ )  A sFt are of the form u p  where (T E C(Q) and p E sYt,  
Therefore the elements of ( ( ~ ( 7 ~ )  A sFt) x  TO)} are of the form (UP, (T'). We consider a 
special subgroup of this group whose elements are of the form (UP, U ) .  We denote this 
subgroup by { ( C ( T ~ )  A sy') X c(TO)}d. We say that two elements P, Q E S Z n + k  belong to 
the same double class of SZ,,+k with respect to the subgroup ( ( ~ ( 7 ~ )  A sYt) X c(TO)}d if and 
only if 

LTppcr- = e, for some rrp E ~ ( 7 0 )  A sCkXf and CT E ~ ( 7 ~ ) .  (1 1 
Seen in this way, it is clear that the k-particle Green function equivalence classes of 
Wise and Trainor (1978) are the double classes defined above. 

In the following we will derive a formula for the number of double classes defined 
above. To this end we proceed as follows. The elements of the regular representation 
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D of the full group bsZn+k are given by 

~ ( P ) Q , R  = SQ,PR p, Q, R E S Z n + k  (2) 
where  SA,^ = 0 unless the elements A and B are identical. 

the group elements themselves. 

that the elements of the matrices A which satisfy the condition 

The rows and columns of the regular representation matrices of &n+k are labelled by 

Considering the regular representation defined above, Wigner (1971) has shown 

D(P)A = AD(P) v p  E SZn+k 

are given by 
(3) 

A Q , R  = aQ--'R (4) 

AB = BA VA ( 5 )  

BQ,R = bQR-1. (6 )  

and, similarly, the elements of the matrices B which obey the condition 

are given by 

We consider now the sets of matrices which intertwine the restriction of the regular 
representation of sZ,,+k to ~ ( 7 0 )  A sTt and ~ ( 7 0 ) .  The set of matrices {D(crp)lcrp E C ( T ~ )  A 

S?'} belongs to the regular representation of S Z n + k .  It forms a reducible representation 
of L"(70) A sp'. Similarly, the subset (D(u ) /a  E ~ ( 7 ~ ) )  forms a reducible representation of 
C ( 7 0 ) .  This last representation is a homomorphism from ~ ( 7 ~ )  A sekXt to ~ ( 7 ~ ) .  We denote 
the subset of matrices B which intertwine the reducible representations {D(crp)lap E 

c ( T ~ )  A sekXt] and {D(u)lu E ~ ( 7 ~ ) )  with each other by the letter C. Therefore the matrices 
C satisfy the condition 

D(crp)C = CD(v)  vu E C ( T O ) ,  p E Sy'. (7) 
We wish to know the number of linearly-independent matrices C which satisfy the 
above condition. For this purpose we write the matrices D(crp) and D(cr) in their fully 
reduced form in terms of the irreducible constituents of the subgroup C ( 7 0 )  A s?' and 
make use of Schur's lemma to conclude that 

cd'(ap)c-' = d'(cr). ( S i  

d'(crp) = d'(cr) V a  E C(TO) ,  p E spt. (9) 

dc = C (J, j) ' , 

This implies that 

Therefore, following Wigner (1971), we obtain for the dimension dc of  the set of 
matrices C 

(10) 
J.I 

where, as in the case of subclasses, J runs through all the irreducible representations of 
S Z n + k ,  each taken only once, and j runs through all the representations d' for which 

d ' ( u p )  = d ' ( u j  V a  E c(70), p E SF'. 
We indicate this restriction in j by putting an asterisk on the summation sign: 

d c  = E* (J,  j ) ' .  
J.i 
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We now connect the above formula to D,, the number of double classes of S2ni -k  with 
respect to ( ( ~ ( 7 ~ )  A syt) x c(n)}d, in the following manner. Consider the equation 

D(ap)C = CD(a) VU E C(To), p E Syt (12) 
where D(gp) and D ( a )  have either one or zero as their elements. From the above 
equation we get 

that is, 

Remembering that the C matrices are a subset of the B matrices, we replace CR,s and 
CQ,R by C ~ s - 1  and C o R - 1  respectively. Thus 

C ~ , R ( a p ) c R s - ' = C  G R - 1 S R , s ( a )  VCT E C(To), p E Syt. (16) 
R K 

Thus the condition which the elements of the matrices C have to satisfy is 

C(q)-'QS-' = CQS-Iu-'. (17) 
This is possible if and only if the elements of C labelled by elements belonging to the 
same double class of SZ,,+k with respect to ((~(7~) A s Y t )  X c(70))d are equal to each 
other. From the above it is clear that 

dc = D,. (18) 
Formula (18) corresponds to Wigner's formula 11. 

If in the above syt = e, the identity element, then the double classes will become 
subclasses and in the formula for the number of subclasses the symbol j runs through all 
the irreducible representations of c(r0). When we specialise in this way all the results of 
Wigner (1971) for the subclasses are applicable here also. 

In the following we derive the formula of Rosensteel et a1 (1975) for the number of 
subclasses from our formula for the same. We have just seen that the number of 
subclasses of s ~ , , + ~  with respect to C ( T ~ ) ,  N, say, is given by 

Ns = c (J,  iI2, (19) 
J,i 

where we emphasise that the symbol j runs through all the irreducible constituents of 
c ( 7 0 ) .  

To proceed further we write the intertwining numbers ( J , j )  in terms of the 
components of the character vectors of the irreducible representations of s2,,+1 and of 
~ ( 7 ~ )  in the following well known form (Altman 1977): 

where 1 is the label of the classes of S Z , , + ~  and the summation extends over all classes of 
s ~ , , + ~ .  1'(1) is the label of a subclass of SZ,,+~ obtained from the class 1 of SZ,,+~ and 
contained as a class in C ( T ~ ) .  The summation over 1'(1) extends over all such subclasses. 
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~ ' ( 1 )  is the size of the subclass Z'(Z) of SZ,,+I contained in C ( T ~ ) .  q5@I) is the I'(1)th 
component of the character vector 4") of the jth irreducible representation of C ( T ~ ) .  

xiJ) is the Ith component of the character vector x(I) of the irreducible representation J 
of S Z ~ + ~ .  The symbol * denotes complex conjugation. Finally, O C ( T ~ )  is the order of 
~ ( 7 ~ ) .  Squaring the expression for the intertwining number (J, j ) ,  we obtain 

where the symbols Zl and l2  representing two different classes of szn+1 take care of the 
cross terms. We now sum both sides of (21) over all J of s ~ , , + ~  and over a l l j  of ~ ( 7 ~ ) .  On 
the right-hand side we perform this summation before the summation over 11, 12, I ' ( E 1 )  

and 1 ' ( 1 2 ) .  Therefore 

In evaluating the summations over J and j we make use of the well known orthogonality 
relations for irreducible characters (Altman 1977): 

where 

&I2 = 1 if l1 = l2 

= O  otherwise 
0 and p indicates the number of irreducible representations of s ~ , , + ~ .  ~ 2 ~ + ~  is the order of 

SZn+l .  

Therefore 
4 

In obtaining the above expression from its predecessor we have cancelled O C ( T ~ )  

from the numerator and the denominator and have dropped the suffix 1 of the symbol Zl 
as it is not required now. 

But from a well known counting principle in group theory (Herstein 1964) we know 
that 

(26) 0 0 0  
S2n+l /  cI= 471) 

where O C ( T I )  represents the order of the centraliser of the representative element 71 of 
the equivalence class I of s ~ ~ + ~ .  Substituting this in the last expression for CJ,j (J, j)' we 
obtain 

Finally, remembering the fact that c ~ , ( ~ )  = 0 unless c1 nc(TO) # 0 the null set (CI is here 
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the Zth class of slntl and not its size), we convert the summation over I and l'(1) into a 
summation over the elements of ~ ( 7 ~ )  and obtain 

We immediately identify the right-hand side of the above equation as the formula 
for the number of subclasses of s2,, + I  with respect to ~ ( 7 ~ )  as derived by Rosensteel et a1 
(1975). 

2.2. The algebra of the wbclasse.7 

We now turn our attention to the algebra of the subclasses of s ~ , , + ~  with respect to the 
subgroup C(Q) and examine the condition that Wigner obtained for (J,  j )  to be either 1 
or 0 for any pair of symbols J and j .  It turns out that for the group-subgroup pair s ~ ~ + ~  
and ~ ( 7 ~ )  there will be at least one pair of symbols J, j such that the corresponding 
intertwining number (J ,  j )  is greater than 1. The proof is as follows. 

Proof. We prove the above statement by showing that there exist subclasses which do 
not commute with each other. This automatically implies that (J, j )  > I for at least one 
pair J, j .  

Consider the aigebra of subclasses of s ~ ~ + ~  with respect to ~(n,). According to the 
formulation of Rosensteel et al (1975) each subclass of s ~ , , + ~  represents a set of 
topologically equivalent many-body diagrams. Diagrams belonging to different sub- 
classes are topologically inequivalent to each other. Therefore, in diagrammatic 
language, each subclass is either connected or disconnected. This means that diagrams 
occurring in a connected subclass are all connected and those occurring in a dis- 
connected subclass are a11 disconnected. Consider the set of elements 

S1SZSI1. (29) 

Take, for sl, the subclass in which the element (0, 1 ,2 ,  . , , , 2 n )  occurs. s l '  stands for 
the subclass iormed by taking the inverses of the elements of sI. For s2 take that 
subclass in which the element (0) (123 . . . 2 n )  occurs. The set s1s2sT1 involves, 
therefore, products of the form 

(0123 . . .2n)(0)(12 I . .2n)(02n.  * . 1) = (012 . . . 2n  - 1)(2n). 

The resulting element has the same cyclic structure as that of (0) (12, . . . 2n )  but in it the 
one-cycle contains the symbol 2n instead of '0'. 

From the above two things are clear: 
(1) s1 and sz do not commute; 
(2) if a disconnected subclass is conjugated with a connected one the result will also 

involve connected subclasses. 
Now consider the case when sz is the subclass consisting of the element (0) ( 1  2 . . 2 n )  
and s1 is the one containing (0) (12) . . (2n - 1 2n) only. We see that sls2s;' has 
elements of the form 

(0)(12)(34) . . . (2n - 1 2n)(0)(12 . . .2n)(0)(12) . . . (2n - 1 2n) 

= (0)(1436. , . 2 n - -  12) .  (306 
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The following two points emerge from (30): 
(3) SI and $2 do not commute with each other; 
(4) the commutator of s1 and s2 consists of only disconnected subclasses. 
From points (l), (2), (3) and (4) above we see that there-exist at least two pairs of 

subclasses whose commutators are not identical. Therefore the number of linearly 
independent commutators of the algebra of subclasses of sZn+l  with respect to ~ ( 7 0 )  is 
never zero. Hence there exists at least one (J,  j )  which is different from both zero and 
one. 

The above discussion demonstrates the power of Wigner's method in deciding 
whether (J,  j )  = 0 or 1 without actually calculating them through a knowledge of the 
character tables of sZncl and of c(q , ) ,  which may be quite tedious. 

Finally, we observe that one can also prove by extending the previous arguments to 
s ~ ~ + ~  and the Corresponding subgroup ~ ( 7 ~ )  A sFt that the number of linearly indepen- 
dent commutators of the algebra of double classes of SZn+k with respect to ((~(7~) A 

srt) x C ( T ~ ) }  is not zero. But this fact does not seem to have any bearing on the value of 
the intertwining number (J,  j ) .  The reason for this is the fact that one cannot formulate 
Wigner's condition in the context of double classes solely in terms of the' linearly 
independent commutators of S Z n + k  with respect to c ( T ~ ) A s ~ ~ ~ ~ .  This fact will be 
discussed below. 

2.3. Example 

As an example of the preceding discussion, we consider the group s5 = s2x2+1 and its 
subgroup C ( T ~ ) ,  ro = (0)(12)(34) E ss. This means that we are concerned with single- 
particle Green functions and their equivalence classes under the action of c ( q ) .  Under 
the action of C ( T ~ ) ,  s5 splits into 22 subclasses. This number is calculated using the 
formulae of both Wigner and Rosensteel et al separately. All four irreducible 
representations of C ( T ~ )  occur in the seven irreducible representations of s5 each once or 
zero times only, except for one which occurs twice. Hence the subclasses are not 
commutative. There are altogether three linearly independent commutators of the 
algebra of subclasses. This number is calculated from Wigner's formula. These are, for 
example, the subclasses containing the elements (01234) and (0123)(4), those contain- 
ing (01234) and (0)(1234), and the ones containing (0134)(2) and (0)(1234). 

In the following we try to obtain, for double classes, a condition similar to the one 
obtained by Wigner (1971) for the commutativity of the subclasses in terms of the 
values of the intertwining numbers (J,  j ) .  For this purpose we consider the following. 

3. The centre of the set of C 

The centre of the set of matrices C, by definition, consists of those matrices 2 which 
commute with all matrices A, with all the matrices C and intertwines D(crp) with D(u)  
for all U E ~ ( 7 ~ )  and p E srt. 

Adopting the same procedure as that of Wigner (1971), one can show that 

c* (J, j)' = dimension of 2 = d,, 
J,i 

(J, j)' being one if DJ contains j ,  zero otherwise, 
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We denote the matrices belonging to the centre Z of the set of matrices C by Z .  
Since the Z are members of the set B, we can write 

ZQ,R = Z Q R  -1 (32) 

and since they are also members of the set C the elements of the matrices Z which are 
labelled by the elements of a double class are all equal to each other i.e. 

z p  = Zuppu-'. (33) 

The additional condition on the 2 is that they commute with any matrix C, i.e. 

C Q R - ~ Z ~ S - ' =  z Q R - l c R s - 1  (34) 
R R 

must be valid for any cp  which is a double-class function.Writing P-' for QR-' on the 
left side and for RS-' on the right side (this is possible since R is a running index on both 
sides) this assumes the form 

The above equations will be satisfied if they are satisfied for all C which assume the 
value one on double class, zero on all others, and if this is true for all double classes. 
Moreover, if U = u~VU- '  then the inverses of U and V are related to each other by the 
equation U-' = c~V-'p- 'c~-' ,  which is an equivalence relation on & + k  with respect to 
the subgroup ( ~ ( 7 ~ )  x ( ~ ( 7 ~ )  A sYt)}d, The equivalence classes are again double classes 
but now with respect to the subgroup mentioned above. Hence, the P-l form a double 
class with respect to { C ( T ~ )  x ( ~ ( 7 ~ )  A sYt)}d if the P do with respect to ((~(7~) A sYt) x 
c (ro)}d. 

From the preceding discussion it follows that 

z P R =  ZRP.  
Pcd-' Pcd- 

In the above QS-' has been replaced by R, the summation over P is to be extended 
over one double class which is made up of the inverses of the elements P-'. The above 
equation is true no matter over which double class the summation takes place as we 
know that Z itself is a double-class function. 

Because of the above reasoning we can write 

where the summation over U is to be extended over the subgroup C ( T ~ ) .  

The above equation can be written as 

Replacing ~ P u - '  by Q and URU-' by T where Q c d-' and T c s are subclasses of 
S Z n + k  with respect to ~ ( 7 ~ )  we get 

We now consider the product of a double class d-" and a subclass s, that is the product 
d-ls. This product contains entire subclasses of SZn+k with respect to ~ ( 7 ~ ) .  This is 
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because, following Wigner's (1971) argument, an element occurs in d-'s and in 
ud-lsu-' = ud-lu-'usu-' = d-'s an equal number of times. 

Keeping the above point regarding the product of a double class d-' and a subclass s 
in mind we now go through the same arguments as those of Wigner (1971) and obtain 
the following formula for d, : 

d, = E* (J, j)' = D, - L c ~ - ~ , ~ I  (40) 
J,i 

where L ~ d - i , ~ ]  is the number of linearly independent commutators of a double class d-' 
and a subclass s. Combining this with the previous result for the number of double 
classes we obtain 

d, - D, = L [ d - l , s l .  (41) 
This corresponds to Wigner's formula 111. All the above results reduce to the results 
obtained by Wigner for the subclasses if we put sTt = e, the identity group. 

4. Conclusion 

In conclusion, we note that from the above discussion there emerge certain points which 
may be worthwhile to investigate. They are: 

(1) the extension of the above generalisation to include any subgroup G1 X Gz; 
(2) the physical meaning of the commutativity or otherwise of the subclasses 

We also observe that the above analysis can also be applied to solve the enumeration 
representing many-body diagrams. 

problem of the permutation isomers mentioned by Hasselbath et a1 (1977). 
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